

STATISTICAL METHODS IN DATA MINING

DR. ALPER VAHAPLAR

Previously on Course... ✓Exploring Data, ✓ Summary Statistics, ✓ Data Visualization, ✓ Measure of Similarity, ✓ Hierarchical Clustering, ✓K-means Clustering ✓Density Based Clustering ✓ Grid Based Clustering

✓ Model Based clustering

Today... ✓ Classification ✓K-nearest neighborhood Bayesian Classification

Supervised – Unsupervised Learning

Supervised learning

- is a *machine learning* technique for creating a function from training data.
- The *training data* consist input objects (typically vectors), and desired outputs.
- The output can be a continuous value (called *regression*), or can predict a class label of the input object (called *classification*).
- The task of the supervised learner is to predict the value of the function for any valid input object after having seen a number of training examples.
- The learner has to generalize from the presented data to unseen situations in a "reasonable" way

Unsupervised learning

- is a method of *machine learning* where a model is fit to observations.
- It is distinguished from *supervised learning* by the fact that there is *no a priori* output.
- In unsupervised learning, a data set of input objects is gathered. Unsupervised learning then typically treats input objects as a set of *random variables*. A joint density model is then built for the data set.

Classification

- The task of assigning *previously unseen* objects to one of several *predefined* categories.
- ✓ Finding a model for class attribute as a function of other attributes.
- ✓ Predicts categorical labels (unlike estimation or prediction).
- ✓ Is a 2-step process:

L. Model construction

- Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute,
- The set of tuples used for model construction is training set,
- The model is represented as classification rules, trees, or mathematical formulae.
- 2. Model usage (Classifying future or unknown objects)
 - Estimate accuracy rate of the model on a test set,
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known.

Illustrating Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Classification Techniques

1. K-Nearest Neighbor

2. Bayesian Classification

$$c = \max_{c_j} \frac{p(c_j)}{p(d)} \prod_{i=1}^{n} p(a_i | c_j)$$

3. Decision Trees

4. Neural Networks

5. Genetic Algorithms

6. Support Vector Machines (SVM)

7. Fuzzy Set Approaches

- ✓ Is an example of instance based learning,
- ✓ Lazy learner not an eager learner ,
- ✓ Training data set is stored,
- Classification for a new unclassified record is found by comparing it to k most similar records in the training set.
- \checkmark If k = 1, then the object is simply assigned to the class of its nearest neighbor.

Unknown record

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

(a) 1-nearest neighbor (b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

DATA MINING-05

- ✓ Choosing the value of k:
 - If k is too small, sensitive to outliers or noise.
 - If k is too large, locally interesting behaviour will be overlooked.

- ✓ Advantages:
- No model is built,
- Building model is cheap,
- Simple technique, easily implemented,
- Well suited for records with multiple class labels,
- Can sometimes be the best method
- ✓ Disadvantages:
 - Hard to decide k,
 - Requires computation of a distance for all new records.

K-NN Example

 \checkmark Using iris data find the class of the following for k=2, k=3, and k=4.

sepal-length	sepal-width	petal-length	petal-width	class
5.1	2.6	5.5	1.1	???

k-NN for Estimation and Prediction

- k-NN may be used for estimation and prediction as well as for *continuous* valued target variables.
- ✓ Locally Weighted Averaging

$$\hat{y}_{\text{new}} = \frac{\sum_{i}^{i} w_i y_i}{\sum_{i}^{i} w_i} \qquad \qquad w_i = 1/d(\text{new}, x_i)^2$$

k-NN for Estimation and Prediction

Record	Age	Na/K	BP	Age _{MMN}	Na/K _{MMN}	Distance
New	17	12.5	?	0.05	0.25	
А	16.8	12.4	120	0.0467	0.2471	0.009305
В	17.2	10.5	122	0.0533	0.1912	0.17643
С	19.5	13.5	130	0.0917	0.2794	0.09756

$$\hat{y}_{\text{new}} = \frac{\sum_{i}^{i} w_{i} y_{i}}{\sum_{i} w_{i}} = \frac{\frac{120}{0.009305^{2}} + \frac{122}{0.17643^{2}} + \frac{130}{0.09756^{2}}}{\frac{1}{0.09756^{2}} + \frac{1}{0.17643^{2}} + \frac{1}{0.09756^{2}}} = 120.0954.$$

k-NN for Estimation and Prediction

	sepal-length	sepal-width	petal-length	petal-width
	????	2.3	3.3	1.2
1	4.9	2.4	3.3	1
2	5.1	2.5	3	1.1
3	5	2	3.5	1
4	5.5	2.4	3.7	1

✓ A probabilistic framework for solving classification problems

✓ Conditional Probability:

$$P(C | A) = \frac{P(A, C)}{P(A)}$$
 $P(A | C) = \frac{P(A, C)}{P(C)}$

✓ Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

- ✓ Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

- Consider each attribute and class label as random variables
- \checkmark Given a record with attributes (A₁, A₂,...,A_n)
- Goal is to predict class C
- Specifically, we want to find the value of C that maximizes $P(C | A_1, A_2, ..., A_n)$

$$P(C|A_1, A_2, A_3, \dots, A_n) = \frac{P(A_1, A_2, A_3, \dots, A_n | C)P(C)}{P(A_1, A_2, A_3, \dots, A_n)}$$

• Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$

			11. J.	1
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 $P(X|C_1) : P(X|buys_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$ $P(X|C_2) : P(X|buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X|C_i)*P(C_i) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007

Therefore, X belongs to class ("buys_computer = yes")

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes M: mammals (7) N: non-mammals (13) $P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$ $P(A \mid N) = \frac{1}{12} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$ $P(A | M)P(M) = 0.06 \times \frac{7}{20} = 0.021$ $P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

DATA MINING-05

Next...

✓ Decision Trees
✓ CART,
✓ C4.5 - C5