

STATISTICAL METHODS IN DATA MINING

DR. ALPER VAHAPLAR

Exploring Data V Descriptive Statistics

✓Data Visualization

✓ Graphs and Tables

References:

- ✓ Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques.
- ✓ Larose, Daniel T. (2005). Discovering Knowledge In Data An Introduction to Data Mining.
- ✓ Tan, P., Steinbach, M., Kumar, v. (2006) Introduction to Data Mining.
- ✓ Bramer, M., (2007) Principles of Data Mining.
- ✓ Birant, D. Lecture Notes (2012).

Exploring Data

- Data understanding,
- ✓ A preliminary exploration of the data to better understand its characteristics.
- Key motivations of data exploration include
- Helping to select the right tool for preprocessing or analysis
- Making use of humans' abilities to recognize patterns
 - People can recognize patterns not captured by data analysis tools
- ✓ Related to the area of Exploratory Data Analysis (EDA)
- Created by statistician John Tukey

Exploring Data

- ✓ In EDA, as originally defined by Tukey
 - The focus was on visualization
 - Clustering and anomaly detection were viewed as exploratory techniques
- ✓ The Iris Plant data set.
- <u>http://alpervahaplar.com</u> iris.xls
- Attribute Information:
- 1. sepal length in cm
 2. sepal width in cm
 3. petal length in cm
 4. petal width in cm
 5. class:
 - -- Iris Setosa
 - -- Iris Versicolour
 - -- Iris Virginica

Iris Setosa

Iris Virginica

Iris Versicolor

Data Mining-03

Exploring Data

- Summary Statistics
 - Frequencies and Mode
 - Quartiles, Percentiles
 - Measures of Location (Central Tendency)
 - Mean
 - Median
 - Measures of Spread (Dispersion)
 - Range,
 - Standard Deviation,
 - Variance
 - Multivariate Summary Statistics

✓ Frequency and Mode

The *frequency* of an attribute value is the percentage of time the value occurs in the data set.

$$frequency(v_i) = \frac{number of objects with attribute value v_i}{n}$$

✓ The *mode* of a an attribute is the value that has the highest frequency.

✓ The notions of frequency and mode are typically used with categorical data.

- ✓ For continuous data, the notion of a *percentile* is more useful.
- ✓ Given an ordinal or continuous attribute x and a number p between 0 and 100, the p^{th} percentile is a value x_p of x such that p% of the observed values of x are less than x_p .
- ✓ By tradition, $min(x) = x_{0\%}$, $max(x) = x_{100\%}$
- ✓ For instance, the 50th percentile is the value $x_{50\%}$ such that 50% of all values of x are less than $x_{50\%}$.
- ✓ Quartiles (4)
- ✓ Quintiles (5)
- ✓ Deciles (10)

✓ Measures of Location (Central Tendency)

• Mean

$$\mathrm{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

• Median

$$\operatorname{median}(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1\\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

- ✓ The mean is the most common measure of the location of a set of points.
- ✓ However, the mean is very sensitive to outliers.
- ✓ Trimmed mean
- (a percentage p is specified, top and bottom (p/2)% of the data is thrown out, mean is calculated)
- ✓ Mean → p=0%, Median → p=100%
- / mean mode = 3 x (mean median) (unimodal and skewed)
- ✓ Types of Mean
- Arithmetic mean,
- Weighted mean,
- Trimmed mean,
- Geometric mean,
- Harmonic mean

✓ Means and medians for Iris data (values in cm.)

Measure	sepal-length	sepal-width	petal-length	petal-width	
mean	5.84	3.05	3.76	1.20	
median	5.80	3.00	4.35	1.30	
tr. mean (p=20%)	5.79	3.02	3.72	1.12	

- Measures of Dispersion
- Range = max(x) min(x)
- Variance, Standard Deviation
- ✓ InterQuartile Range (IQR)
- ✓ Absolute Average Deviation (AAD)
- Median Absolute Deviation (MAD)

interquartile range(x) = $x_{75\%} - x_{25\%}$

$$AAD(x) = \frac{1}{m} \sum_{i=1}^{m} |x_i - \overline{x}|$$

$$MAD(x) = median\left(\{|x_1 - \overline{x}|, \dots, |x_m - \overline{x}|\}\right)$$

Alper VAHAPLAR

✓ Skewness and Kurtosis

Coef.of Skewness =
$$\frac{\mu_3}{\sigma^3} = \frac{E(X-\mu)^3}{\sigma^3}$$

Coef.of Kurtosis =
$$\frac{\mu_4}{\sigma^4} = \frac{E(X-\mu)^4}{\sigma^4}$$

Data Mining-03

Iris Data

Measure	sepal-length	sepal-width	petal-length	petal-width	
mean	5.84	3.05	3.76	1.20	
median	5.80	3.00	4.35	1.30	
tr. mean (p=20%)	5.79	3.02	3.72	1.12	
range	3.6	2.4	5.9	2.4	
std	0.8	0.4	1.8	0.8	
IQR	1.3	0.5	3.5	1.5	
AAD	0.7	0.3	1.6	0.6	
MAD	0.7	0.3	1.2	0.7	
Skewness	0.31	0.33	-0.27	-0.10	
Kurtosis	-0.55	0.29	-1.40	-1.34	

✓ 5 Number Summary

- 1. Minimum
- 2. First Quartile (Q1)
- 3. Median
- 4. Third Quartile (Q3)
- 5. Maximum

- ✓ Multivariate Summary Statistics
- ✓ Covariance

$$s_{x,y} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$r_{xy} = \frac{S_{x,y}}{S_x S_y}$$

- the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported.
- ✓ The Goal:
 - interpretation of the visualized information by a person,
 - formation of a mental model of the information.
- Visualization of data is one of the most powerful and appealing techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually,
 - Can detect general patterns and trends,
 - Can detect outliers and unusual patterns.

sepal-length	sepal-width	petal-length	petal-width	class
5.000	5.000	4.100	1.500	
5.500	2.500	4.000	1.300	Iris-versicolor
5.500	2.600	4.400	1.200	lris-versicolor
6.100	3.000	4.600	1.400	lris-versicolor
5.800	2.600	4.000	1.200	lris-versicolor
5.000	2.300	3.300	1.000	lris-versicolor
5.600	2.700	4.200	1.300	Iris-versicolor
5.700	3.000	4.200	1.200	Iris-versicolor
5.700	2.900	4.200	1.300	lris-versicolor
6.200	2.900	4.300	1.300	lris-versicolor
5.100	2.500	3.000	1.100	Iris-versicolor
5.700	2.800	4.100	1.300	Iris-versicolor
6.300	3.300	6.000	2.500	lris-virginica
5.800	2.700	5.100	1.900	lris-virginica
7.100	3.000	5.900	2.100	lris-virginica
6.300	2.900	5.600	1.800	lris-virginica
6.500	3.000	5.800	2.200	lris-virginica
7.600	3.000	6.600	2.100	lris-virginica
4.900	2.500	4.500	1.700	lris-virginica
7.300	2.900	6.300	1.800	lris-virginica
6,700	2,600	6 QOO	1,000	trie virginieg

- ✓ General Concepts:
 - Representation
 - Is the mapping of information to a visual format.
 - Data objects, their attributes, and the relationships among data objects are translated into graphical elements such as points, lines, shapes, and colors.
 - Arrangement
 - Is the placement of visual elements within a display.
 - Can make a large difference in how easy it is to understand the data.
 - Selection
 - Is the elimination or the de-emphasis of certain objects and attributes.

✓ Representing

✓ Arrangement

Data Mining-03

✓ Arrangement

	1	2	3	4	5	6		6	1	3	2	5	4
1	0	1	0	1	1	0	4	1	1	1	0	0	0
2	1	0	1	0	0	1	2	1	1	1	0	0	0
3	0	1	0	1	1	0	6	1	1	1	0	0	0
4	1	0	1	0	0	1	8	1	1	1	0	0	0
5	0	1	0	1	1	0	5	0	0	0	1	1	1
6	1	0	1	0	0	1	3	0	0	0	1	1	1
7	0	1	0	1	1	0	9	0	0	0	1	1	1
8	1	0	1	0	0	1	1	0	0	0	1	1	1
9	0	1	0	1	1	0	7	0	0	0	1	1	1

✓ Selection

- ✓ Techniques
 - Stem and Leaf Graphs
 - Bar Charts, Pie Charts
 - Histograms
 - Box Plots
 - Scatter Plots
 - Contour Plots
 - Surface Plots
 - Star Graph
 - Chernoff Faces

✓ Stem and Leaf Plot

Bar charts and Pie charts

Data Mining-03

Bar charts and Pie charts

-6

- Histograms
 - Usually shows the distribution of values of a single variable
 - Divide the values into bins and show a bar plot of the number of objects in each bin.
 - The height of each bar indicates the number of objects
 - Shape of histogram depends on the number of bins
- Example: Petal Width (10 and 20 bins, respectively)

Data Mining-03

✓ Box Plots

✓ Box Plots

Boxplot of sepal-length; sepal-width; petal-length; ... vs class

Data Mining-03

✓ Scatter Plot

- ✓ Scatter Plot
 - Attributes values determine the position.
 - Two-dimensional scatter plots most common, but can have three-dimensional scatter plots.
 - Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects.
 - It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes.

✓ Scatter Plot

✓ Scatter Plot

✓ Array of Scatter Plot

- ✓ Contour plots
 - Useful when a continuous attribute is measured on a spatial grid
 - They partition the plane into regions of similar values.
 - The contour lines that form the boundaries of these regions connect points with equal values
 - The most common example is contour maps of elevation.
 - Can also display temperature, rainfall, air pressure, etc.

✓ Contour plots example: Sea Surface Temperature – December 1998

Celsius

✓ Surface Plot

Data Mining-03

- ✓ Star Plots
 - This technique use one axis for each attribute,
 - The axes radiate from a central point.
- The line connecting the values of an object is a polygon
- ✓ Chernoff Faces
 - Approach created by Herman Chernoff
 - This approach associates each attribute with a characteristic of a face
 - The values of each attribute determine the appearance of the corresponding facial characteristic
 - Each object becomes a separate face
 - Relies on human's ability to distinguish faces

✓ Star Graph for 15 Iris flowers

✓ Chernoff Faces for 15 Iris flowers

Data Mining-03