STATISTICAL METHODS IN DATA MINING

Dr. Alper VAHAPLAR

Data Understanding

✓ Data Preparation,
✓ Data Understanding,
✓ Data Visualization,
✓ IBM SPSS Modeler

References:

✓ Han, J. , Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques.

✓ Larose, Daniel T. (2005). Discovering Knowledge In Data – An Introduction to Data Mining.

✓ Tan, P., Steinbach, M., Kumar, v. (2006) Introduction to Data Mining.

✓ Bramer, M., (2007) Principles of Data Mining.

✓ Birant, D. Lecture Notes (2012).

Data Mining-02

Knowledge Discovery in Databases

Data Preprocessing

- ✓ Why to pre-process data?
 - Data may be in different location/media,
 - Fields that are obsolete or redundant
 - Missing values
 - Outliers
 - Data in a form not suitable for data mining models
 - Values not consistent with policy or common sense
- ✓ The aim is to *minimize GIGO*
- Garbage In Garbage Out

Data Preprocessing

✓ Data Integration, Selection

Data Cleaning

- ✓ Data Cleaning,
- Data Transformation,
- **Data Reduction**

Data Integration

Data Integration

✓ Data Integration

- Obtain and collect data from various sources
 - Ex: Outside or inside of the company
- Combine data from multiple sources into a coherent store
 - Printed Forms, (bills, reports, etc.)
 - Tables
 - Excel Tables, SPSS, Minitab, MATLAB, etc...
 - Database Tables (Access, SQL Server, Oracle ...)
 - Files (unstructured or structured files)
 - XML Files
 - Web Pages
 - Data Cubes, Data Marts

Data Integration

✓ Possible Problems:

- Same person, different spellings
 - e.g. Hasan Hüseyin, H. Hüseyin, H. H., Hasan H., Haso, Hüso, ...
 - e.g.Dokuz Eylül Üniversitesi, 9 Eylül Üniversitesi, DEÜ, DEU ..
- Same person, different addresses
 - Kaynaklar Kampüsü, Tınaztepe Yerleşkesi
- Homonyms (same name for different entities)
 - e.g. (Öğrenci.)no, (SGK.)no
 - e.g. Unit incompatibilities (US Dollar, Canada Dollar)
- Synonyms (different names for the same entities)
 - e.g. İçel, Mersin

Data Integration

✓ Possible Problems:

- Different metrics
 - e.g., cm³, m³
- Schema errors
 - e.g., A.cust-id \equiv B.cust-no
 - e.g. TCK, KimlikNo, TCKimlik
- Redundancy
 - e.g. Year of birth, age
 - e.g. Annual income salary,
 - Can be detected by correlation analysis

$$r_{A,B} = \frac{\Sigma(A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

$$\overline{A} = \frac{\Sigma A}{n}$$

$$\sigma_A = \sqrt{\frac{\Sigma (A - \overline{A})^2}{(n - 1)}}$$

✓ Data Selection

Database may store terabytes of data

- Complex data analysis / mining
- May take a very long time to run on the complete data set
- Selecting a target dataset
- Obtains a reduced representation of the data set (smaller in volume but yet produces the same (or almost the same) results)
- ✓ How to select?
- Feature Subset Selection
- Sampling

✓ Feature Subset Selection

- Selecting related attributes
- Eliminating redundant fields

✓ Sampling

- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data

✓ Sampling

- ✓ Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the same object can be picked up more than once population as they are selected for the sample,

✓ Stratified sampling

 Split the data into several partitions; then draw random samples from each partition

✓ Cluster Sampling

 Heterogenous clusters are constructed, one or more clusters are chosen as the sample

✓ Sampling

✓ Sampling

Stratified Sample

(according to age)

тз8	young
T256	young
T307	young
T391	young
т96	middle-aged
T117	middle-aged
T138	middle-aged
T263	middle-aged
T290	middle-aged
тзо8	middle-aged
T326	middle-aged
T387	middle-aged
т69	senior
T284	senior

тзв	young
T391	young
T117	middle-aged
T138	middle-aged
T290	middle-aged
T326	middle-aged
т69	senior

✓ Sampling

8000 points

2000 Points

500 Points

- Real-world data tend to be *incomplete*, *noisy*, and *inconsistent*.
- Data mining focuses on detection and correction of data quality errors, and using algorithms that can tolerate poor data quality.

✓ Tasks in data cleaning

- Detect errors,
- Fill in missing values,
- Smooth noise,
- Identify outliers,
- Correct inconsistencies,

✓ Detecting errors – types of errors:

- Typographic errors, user entry problems,
- Data type errors (integer floating point)
- Measurement and data collection errors,
- Missing values,
- Noise and artifacts,
- Outliers,
- Duplicate data,
- Inconsistent values.

✓ Missing Values

- ✓ Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Methods for handling with missing values:

- 1. Ignore the tuple,
- 2. Fill the missing value manually,
- 3. Use a global constant to fill in the missing value ("Unknown", " ∞ "),
- 4. Use the attribute mean/mod/median to fill in the missing value,
- 5. Use the attribute mean for all samples belonging to the same class as the given tuple,
- 6. Use the most probable value to fill in the missing value.

Find the appropriate missing salary value for ID = 1028.

ID	Gender	Age	Marital Satatus	Education	Region	Salary	Cluster
1021	F	41	Married	Master	Izmir	1200	C1
1022	Μ	27	Married	Bach.	Ankara	1000	C1
1023	М	20	NeverM	High School	Izmir	1000	C2
1024	F	34	Married	Bach.	İstanbul	1000	C3
1025	М	74	Married	Middle	Ankara	500	C2
1026	М	32	Married	PhD	İstanbul	2000	C2
1027	М	18	NeverM	High School	Ankara	800	C3
1028	F	43	Married	Master	Izmir	???	C1

- ✓ Noise and Artifacts
- ✓ Noise is the random component of a measurement error.
- Noise is a random error or variance in a measured variable.
- Precision and Bias
 - Precision = mean real value, Bias = standart deviation
 - E.g. Assess a weight scale with a mass of 1 kg.
- (1.015, 0.990, 1.013, 1.001, 0.986)
- Bias = 0.001, Precision = 0.013

Alper VAHAPLAR

Data objects that have characteristics different from most of the

Techniques for Smoothing Noise

Data Cleaning

Histogram

✓ Outliers are

other data,

- Binning
- Clustering

Data Mining-02

✓ Binning

✓ First data are sorted, then partition data into bins.

Equal-width partitioning

- Divides the range into N intervals of equal size
- o if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B −A)/N.

Equal-depth partitioning

 Divides the range into N intervals, each containing approximately same number of samples

Equal width	B 1	B1	B2	B3	B3	B3						
Price in €	4	6	14	16	18	19	21	22	23	25	27	33
Equal depth	B 1	B1	B1	B1	B2	B2	B2	B2	B3	B3	B3	B3

✓ Binning

- (a) Equal Depth and Smoothing by Bin Means
- (b) Equal Depth and Smoothing by Bin Boundaries
- (c) Equal Width and Smoothing by Bin Means
- (d) Equal Width and Smoothing by Bin Boundaries

Equal width	B1	B1	B2	B3	B3	B3						
Price in €	4	6	14	16	18	19	21	22	23	25	27	33
Equal depth	B1	B1	B1	B1	B2	B2	B2	B2	B3	B3	B3	B3

Equal-Width Partitioning

(33-4) / 3 ~ 9 Bin1 (4-13) : 4 6 Bin2 (14-23) : 14 16 18 19 21 22 23 Bin3 (24-33) : 25 27 33

Equal-Depth Partitioning

Bin1: 4 6 14 16 Bin2: 18 19 21 22 Bin3: 23 25 27 33

✓ Binning – Smoothing

Replace all values in a BIN (smoothing values)

Price in €	4	6	14	16	18	19	21	22	23	25	27	33
Equal depth	B1	B1	B 1	B 1	B2	B2	B2	B2	B3	B3	B3	B3
Smoothing by bin means	10	10	10	10	20	20	20	20	27	27	27	27
Smoothing by bin boundaries	4	4	16	16	18	18	22	22	23	23	23	33
Price in €	4	6	14	16	18	19	21	22	23	25	27	33
Equal width	B1	B1	B 2	B2	B2	B 2	B2	B2	B2	B 3	B 3	B3
Smoothing by bin means	5	5	19	19	19	19	19	19	19	28	28	28
Smoothing by bin boundaries	4	6	14	14	14	23	23	23	23	25	25	33

Data Mining-02

Binning Example

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into Equal-Depth bins:
 - **Bin 1:** 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - **Bin 1:** 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

- * Partition into Equal-Width bins:
 - **Bin 1:** 4, 8, 9
 - Bin 2: 15, 21, 21, 24
 - Bin 3: 25, 26, 28, 29, 34
- * Smoothing by bin means:
 - **Bin 1:** 7, 7, 7
 - Bin 2: 20, 20, 20, 20
 - **Bin 3:** 28, 28, 28, 28, 28
- * Smoothing by bin boundaries:
 - **Bin 1:** 4, 9, 9
 - Bin 2: 15, 24, 24, 24
 - Bin 3: 25, 25, 25, 25, 34

✓ Clustering

• Process of creating groups with similar objects.

• Homogenity in cluster, heterogenity between clusters.

Data Transformation

➢Smoothing,

- ➢Generalization,
- ➢Normalization,
- ➢Reduction,

➢Feature construction

Data Transformation

✓ Smoothing

• Binning, Clustering, Regression

✓Generalization:

- where low level data are replaced by higher level concepts through the use of concept hierarchies.
- Ex: street attribute can be generalized like city;
- age \rightarrow child, young, middle aged, senior

Data Transformation

- ✓ Normalization: scaled to fall within a small, specified range
 - Min-max normalization
 - Z-score normalization
 - Normalization by decimal scaling

Normalization

✓ Min-max normalization: to [0, 1] $v' = \frac{v - min_A}{max_A - min_A}$

 \checkmark Min-max normalization: to [*new_min_A*, *new_max_A*]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

✓ Z-score normalization (µ: mean, σ : standard deviation): $v' = \frac{v - \mu_A}{\sigma_A}$

Normalization by decimal scaling

where *j* is the smallest integer such that max(|v'|) < 1

 $v' = \frac{v}{10^j}$

Normalization Example

✓ Min-max normalization: $v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$

 Ex. Let income range \$12,000 to \$98,000 normalized to [0, 1]. Then \$73,600 is mapped to

 $\frac{73,600-12,000}{98,000-12,000}(1-0) + 0 = 0.716$

✓ Z-score normalization

• Ex. Let μ = 54,000, σ = 16,000. Then

 $v' = \frac{v - \mu_A}{\sigma_A}$

$$\frac{73,\!600\!-\!54,\!000}{16,\!000}\!=\!1.225$$

✓ Normalization by decimal scaling $\frac{73,600}{100,000} = 0.736$ $v' = \frac{v}{10^{j}}$

Data Mining-02

Normalization Example

Price in €	4	6	14	16	18	19	21	22	23	24	27	34
Min-max [0,1]	0	.06	.33	.4	.46	.5	.56	.6	.63	.66	.76	1
Z-score	-1.8	-1.6	-0.6	-0.3	-0.1	0	0.2	0.4	0.5	0.6	1	1.8
Decimal Scaling	.04	.06	.14	.16	.18	.19	.21	.22	.23	.24	.27	.34

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (new_{max_{A}} - new_{min_{A}}) + new_{min_{A}} \qquad v' = \frac{v - \mu_{A}}{\sigma_{A}} \qquad v' = \frac{v}{10^{j}}$$

Data Mining-02

- ✓ Sampling,
- ✓ Data Cube Aggregation,
- ✓ Dimension Reduction,
- ✓ Data Compression,
- Numerosity Reduction,
- Discretization and Concept Hierarchy Generation

 Aggregation: Combining two or more attributes (or objects) into a single attribute (or object)

Data Mining-02

- Dimensionality Reduction: reducing the data set size by
- removing some attributes, or
- producing new attributes (or models) to represent the older ones.

✓Some methods

- Stepwise Forward Selection,
- Stepwise Backward Elimination,
- Combination of both,
- Principal Component Analysis,
- Singular Value Decomposition,
- Decision Tree Induction,

Forward Selection

Initial attribute set: {A1, A2, A3, A4, A5, A6} Initial reduced set: {} -> {A1} --> {A1, A4} ---> Reduced attribute set: {A1, A4, A6}

Backward Elimination

Initial attribute set: {A1, A2, A3, A4, A5, A6} -> {A1, A3, A4, A5, A6} --> {A1, A4, A5, A6} --> Reduced attribute set: {A1, A4, A6}

Decision Tree Induction

Initial attribute set: {A1, A2, A3, A4, A5, A6}

---> Reduced attribute set: {A1, A4, A6}

Data Mining-02

 \mathbf{X}_1

Compression: encoding data to obtain a reduced representation.

- ✓ Losless Lossy
- Methods for Compression
 - Standardization,
 - Normalization,
 - Logarithmic transformation (log(x))
 - Fourier Transformation,
 - Wavelet Transformation.

✓Numerosity Reduction

Parametric Methods: a model is used to estimate the data.

- Linear Regression ($Y = \alpha + \beta X$),
- Multiple Regression (Y = b0 + b1 X1 + b2 X2),
- Logistic Regression, (P = 1/(1+exp(-(B0 + B1*X1 + B2*X2 + ... + Bk*Xk)))
- Poisson Regression,
- Log Linear Models.
- Non Parametric Methods
 - Histogram Analysis,
 - Clustering,
 - Sampling.

Discretization and Concept Hierarchy Generation

- Discretization: reducing the number of values for a given continuous attribute by dividing the range of the attribute into intervals.
- Concept Hierarchy: reduce the data by collecting and replacing low level concepts by higher level concepts.
- Ex: age \rightarrow {young, middle-aged, old, fossil)

- Discretization and Concept Hierarchy Generation for Numeric Data
 - Binning
 - Histogram Analysis
 - Cluster Analysis
 - Entropy Based Discretization
 - Segmentation by Natural Partitioning.

An Introduction to Modeler 18.0

IBM SPSS Modeler 18.0

